Geography of the
worlds oceans and major
current systems

Lecture 2



WHY is the GEOMORPHOLOGY OF THE
OCEAN FLOOR important?

(in the context of Oceanography)



WHY is the GEOMORPHOLOGY OF THE
OCEAN FLOOR important?

(in the context of Oceanography)

@ Ocean circulation, tides, and mixing on regional and basin
scales are heavily controlled by the topography of the ocean.

@ The nature of the earth, its origin, and its characteristics have
a profound effect on the properties and the composition of
the biota that are contained in the ocean.

@ The structure and distribution of sediments can be understood
based on the geomorphology of the ocean floor. These
sediments are important because they tell us about the
geochemistry of the ocean floor. Also they can be used to
reconstruct ocean circulation of the past and improve our
understanding of the climate system.
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Geologic Differences between Continents
and Ocean Basins
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e Confinental crust is mainly composed of granite, a light colored, lower
density (2.8 gm/cm3) igneous rock rich in aluminum, silicon and oxygen.

e QOceanic crust is composed of basalf, a dark colored, higher density
(2.9 gm/cm3) volcanic rock rich in silicon, oxygen and magnesium.

e Oceanic crust is thin and dense. Continental
crust is thick and light.



Isostasy is a term used in Geology to refer
to the state of gravitational equilibrium
between the Earth's lithosphere and
asthenosphere such that the tectonic plates
(continental and ocean crusts) "float" at an
elevation which depends on their thickness
and density. (similar to ice floating in
water).



In the 1960s there was a geological revolution: the realization that the
surface of the earth is in motion, slowly recycling the material that
makes up our environment and shapes the ocean basins and seafloors.
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Age of oceanic crust.
Youngest crust is along spreading centers (in red) - these
are the mid-ocean ridges
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Elevation of Earths surface displays a bimodal distribution
with about 29% above sea level and much of the remainder
at a depth of 4 to 5 kilometers below sea level.
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Major current systems
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You see gyres separated by zonal flow at equator



Eq. equatorial

. current C.C. counter current

Now see gyres offset to west and zonal currents
and countercurrents on equator, plus subpolar gyres
in northern hemisphere, and north-south excursion

of ACC in Southern Ocean



Descending
cold, dry air
- <~  Polarcell

Rising warm,
-~ moist air
e

%y Ferrel cell

»_/ Descending

3
\ | Hadley cell
1 ) Rising
| warm,

4 /Hadley cell

S 4
r 4
1. 22 1l \ . y L
\ ) s Ausy 9 R N/ -

< Descending

7\ cool, dry air
- \ ¥ A
P /

4 -~ y
- \\ Sk B, O, - e e S~ T s z c T 4 /' Ferrel cell
< Aakla

1
\—" Rising warm,

« ; moist air
Wast wind ovit . 5
~
cd \ — e -_— - e — e — o
-

~ b
~~
~ ) ~
e Sy N N O o W S o i O
e \\ \:" \\Ar\‘m'n'.\: Clrcumpoly
warm currents : S. south  Eq. equatorial
- p Ccool currents nt C.C. counter current

~
cold, dry air

Wind systems look somewhat similar to ocean gyres, but not
asymmetric... (ECC in opposite direction!)

Notice: subtropical gyre centers at latitude 30 - where air

descends (high P). Gyre boundaries at 45 - rising air (low P)
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North Atlantic Drifter Tracks
Through August 1997

Data Assembly Center
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Intermediate and
Deep circulation
more complex and
energetic than
previously thought




Pacific 4500 dbar circulation

Reid (1997)
4500 m

Deep circulation steered by
bathymetry of ocean floor



Great ocean conveyor belt

Heat release

Global thermohaline
p ~ circulation

Meridional overturning
circulation

Talley 2013
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Sea Surface Temperature (°C)
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