Abyssal circulation,
convection and mixing

Lecture 21



Four main sites for deep and bottom water formation are
in the coldest polar and sub-polar oceans.

Greenland Sea and Irminger Basin/Labrador Sea in the N. Atlantic,
Weddell and Ross Seas in the Southern Ocean.
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Deep Convection in the Labrador Sea

@ Heat loss to atmosphere increases density of
mixed layer, which gradually deepens.

@ Deepest mixed layers occur near the ice
edge - perhaps due to albedo effects? and/
or brine rejection?

@ Interior becomes weakly stratified and
Instabilities occur on small space and fime
scales

@ Mixed layers up to 1500 m!



Deep Convection iIn
the Labrador Sea

Change in femperature and salinity
from December to March (from
profiling float).

Mixed Layer Evolution, Winter 1996-97

MLD in winter shows region of
deep convection

(Lavender & Davis, 1999; Lilly et al., 1999)
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Deep Convection in the Labrador Sea
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Deep Convection in the Labrador Sea
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@ Southern Ocean
convection IS common iIn
polynyas - small areas of
ice-free ocean (50-200
km) - where rapid cooling
quickly destabilises the
water column.

rare open ocean polynyas

@ Polynyas form close to
ice shelves due to cold
and dry katabatic winds,
and sometimes in the
open ocean when those
winds extend north




Deep Water formation in the Southern Ocean
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Deep sea floor Deep sea floor

(a) Cold fresh surface water over warm salty deep water. Open ocean convection
is inhibited by storm belt precipitation and ice cover. Ventilation limited to
continental shelf and slope. Brine rejection and cooling within coastal polynya and
under glacial ice. Plumes of dense water descend the continental slope.

(b) Deep convection (3000 m!) can occur in polynyas formed in the storm belt
when cold, dry polar air expands northward (negative Southern Annular Mode) and
precipitation is reduced.




Evaporative Basins produce sal’ry infermediate waters

Med Sea Water, 39 psu

Although these waters are dense enough
to sink fo the bottom, rigorous mixing
occurs with fresher waters as they
overflow shallow sills into the open
ocean. Both these waters end up
spreading at about 600 - 1000 m depth

with salinities 3-4 psu less than source. Red Sea Water, 40 psu




Stommel-Arons theoretical abyssal
circulation (1958-1960)
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Driven by uniform upwelling. Single sources in North
Atlantic and Southern Ocean. Analogy with Sverdrup
Balance, but with upwelling somehow driven by turbulence.



John Swallow invented the neutrally buoyant float and
observed the DWBC, proving Stommels theory. Swallow
floats also first revealed that eddies dominate in the open
ocean, during the MODE experiment of the 1970s.
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But where and how does
upwelling happen?

® Stommel-Aarons assumed uniform upwelling
everywhere and Munk showed, thru a simple
advective-diffusive balance, that this upwelling is
1x10-4 m2s-! , or about 25-30 Sv of deep water
formation globally.

@ But, measurements of mixing in the open ocean are
always 10-100x smaller

@ In fact, open ocean mixing is measured to be bottom
intensified, acting to move water DOWNWARD!
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Elevated mixing over rough topography intensifies downward
(Polzin et al, 1997). Resulting buoyancy flux is downward, except
within bottom boundary layer, about 50 m (Ocean Mixing, 2022).
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(Ocean Mixing, 2022, Garabato and Meredith Eds.)
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Ocean Mixing, Chapter 3

VENT: Adiabatic
upwelling/
downwelling driven
by surface mixing

TOPO: Upwelling in BBL and
downwelling above drives
northward flow of bottom
water and southward flow

of deep water and fluxes

MUNK: Small
mixing driven by
background 3-D

turbulence




What exactly Is Mixing?

@ 3-D turbulence: Gravitational and shear instabilities, on
scales 1-100 m

@ Large in surface and bottom boundary layers, 10-100 m2 s-!

@ Moderate in interior mostly due to breaking internal waves
generated by tides, 1 m2 s-

@ Irreversible mixing of momentum and tracers

@ Geostrophic turbulence: Barotropic and baroclinic
instabilities, on scales of 1-300 km

@ Eddies stir momentum and properties horizontally, generating
fronts, but not mixing

@ In boundary layers, where fracer surfaces are not aligned
with density, eddies can irreversibly mix



